Chat with us    I am learning how to calculate the conversions between cryptocurrencies Qi and Quai.
     
Econet / Calculus     Search:

Entropy, Free energy principle, Maximum entropy principle, Desmos graph calculator


Calculus

Understanding {$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}$}


{$f'(x)$} is the derivative of {$f(x)$} at {$x$}

We can write {$f'(x_0)=\lim_{x\rightarrow x_0}\frac {f(x_0)-f(x)}{x_0-x}$} which makes clear that a derivative is the limit of a slope.

If we set {$x_0=x+h$} then note that {$x_0-x=(x+h)-x=h$}. We get {$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}$} which makes clear that a derivative results from a tiny perturbation {$h$} of the value {$x$}. We are comparing {$f(x)$} and {$f(x+h)$} in terms of {$h$}. This form is convenient for the calculations below.


Focus on the case when {$f(x)$} is a polynomial

Consider the cases {$f(x)=1, f(x)=x, f(x)=x^2, f(x)=x^3\dots $}


{$f(x)=1$}

{$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}=\lim_{h\rightarrow 0}\frac {1-1}{h}=\lim_{h\rightarrow 0}\frac{0}{h}=\lim_{h\rightarrow 0}0=0$}

{$f'(x)=0$}


Multiply by a constant: {$g(x)=Cf(x)$}

{$g'(x)=\lim_{h\rightarrow 0}\frac {g(x+h)-g(x)}{h}=\lim_{h\rightarrow 0}\frac {Cf(x+h)-Cf(x)}{h}=\lim_{h\rightarrow 0}C\frac{f(x+h)-f(x)}{h}=C\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}=Cf'(x)$}


{$g(x)=C$}

{$g(x)=C\cdot 1$}

{$g(x)=C f(x)$} where {$f(x)=1$}

{$g'(x)=C f'(x)=C\cdot 0 = 0$}


{$f(x)=x$}

{$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}=\lim_{h\rightarrow 0}\frac {x+h-x}{h}=\lim_{h\rightarrow 0}\frac {h}{h}=\lim_{h\rightarrow 0}1=1$}

{$f'(x)=1$}


{$f(x)=Cx$}

{$f'(x)=C\cdot 1$}

{$f'(x)=C$}


{$f(x)=A(x)+B(x)$}

{$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}=\lim_{h\rightarrow 0}\frac {A(x+h)+B(x+h)-A(x)-B(x)}{h}=\lim_{h\rightarrow 0}\frac {A(x+h)-A(x)+B(x+h)-B(x)}{h}$}

{$=\lim_{h\rightarrow 0}\frac {A(x+h)-A(x)}{h}+\lim_{h\rightarrow 0}\frac {B(x+h)-B(x)}{h}= A'(x)+B'(x)$}

{$f'(x)=A'(x)+B'(x)$}


{$f(x)=mx+b$}   Line with slope {$m$} and y-intercept {$b$}

{$f'(x)=(mx)' + (b)'$}

{$f'(x)=m + 0 = m$}

{$f'(x)=m$}The derivative of a line is its slope.

{$f(x)=x^2$}

{$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}=\lim_{h\rightarrow 0}\frac {(x+h)^2-x^2}{h}=\lim_{h\rightarrow 0}\frac {(x+h)(x+h)-x^2}{h}=\lim_{h\rightarrow 0}\frac {x^2+xh+hx+h^2-x^2}{h}$}

{$=\lim_{h\rightarrow 0}\frac {x^2+2xh+h^2-x^2}{h}=\lim_{h\rightarrow 0}\frac {2xh+h^2}{h}=\lim_{h\rightarrow 0} 2x + h=2x$}

{$f'(x)=2x$}


{$(x+h)(x+h)=xx + xh + hx + hh$}


An example of the limiting process

{$\mathbf{f(x)=x^2}$}{$\mathbf{f'(x)=2x}$}{$\mathbf{f'(1)=2}$}
{$\mathbf{x}$}{$\mathbf{h}$}{$\mathbf{x+h}$}{$\mathbf{f(x)}$}{$\mathbf{f(x+h)}$}{$\mathbf{f(x+h)-f(x)}$}{$\mathbf{\frac{f(x+h)-f(x)}{h}}$}
{$1$}{$1$}{$2$}{$1$}{$4$}{$3$}{$3$}
{$1$}{$.1$}{$1.1$}{$1$}{$1.21$}{$.21$}{$2.1$}
{$1$}{$.01$}{$1.01$}{$1$}{$1.0201$}{$.0201$}{$2.01$}
{$1$}{$.001$}{$1.001$}{$1$}{$1.002001$}{$.002001$}{$2.001$}

{$(x+h)^3=xxx + xxh + xhx + hxx + xhh + hxh + hhx + hhh$}


{$f(x)=x^3$}

{$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}$}

{$f'(x)=\lim_{h\rightarrow 0}\frac {f(x+h)-f(x)}{h}=\lim_{h\rightarrow 0}\frac {(x+h)^3-x^3}{h}=\lim_{h\rightarrow 0}\frac {(x+h)(x+h)-x^3}{h}=\lim_{h\rightarrow 0}\frac {xxx+xxh+xhx+hxx+xhh+hxh+hhx+hhh - xxx}{h}$}

{$=\lim_{h\rightarrow 0}\frac {x^3+3x^2h+3xh^2+h^3-x^3}{h}=\lim_{h\rightarrow 0}\frac {3x^2h+2xh^2+h^3}{h}=\lim_{h\rightarrow 0} 3x^2+3xh+h^2=3x^2$}

{$f'(x)=3x^2$}


{$\mathbf{(x+h)^n}$}
          {$1$}          
         {$x$} {$h$}          
        {$x^2$} {$2xh$} {$h^2$}        
       {$x^3$} {$3x^2h$} {$3xh^2$} {$h^3$}       
      {$x^4$} {$4x^3h$} {$6x^2h^2$} {$4xh^3$} {$h^4$}      
     {$x^5$} {$5x^4h$} {$10x^3h^2$} {$10x^2h^3$} {$5xh^4$} {$h^5$}      
    {$x^6$} {$6x^5h$} {$15x^4h^2$} {$20x^3h^3$} {$15x^2h^4$} {$6xh^5$} {$h^6$}    
   {$x^7$} {$7x^6h$} {$21x^5h^2$} {$35x^4h^3$} {$35x^3h^4$} {$21x^2h^5$} {$7xh^6$} {$h^7$}   
  {$x^8$} {$8x^7h$} {$28x^6h^2$} {$56x^5h^3$} {$70x^4h^4$} {$56x^3h^5$} {$28x^2h^6$} {$8xh^7$} {$h^8$}  
 {$x^9$} {$9x^8h$} {$36x^7h^2$} {$84x^6h^3$} {$126x^5h^4$} {$126x^4h^5$} {$84x^3h^6$} {$36x^2h^7$} {$9xh^8$} {$h^9$} 
{$x^{10}$} {$10x^9h$} {$45x^8h^2$} {$120x^7h^3$} {$210x^6h^4$} {$252x^5h^5$} {$210x^4h^6$} {$120x^3h^7$} {$45x^2h^8$} {$10xh^9$} {$h^{10}$}

{$\binom{n}{k}=\frac{n!}{k!(n-k)!}$}


Proof of luck = Proof of work = Uncovering 0 or 1

   0 1   
  00 01 10 11  
 000 001 010 100 011 101 110 111 
0000 0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 0111 1011 1101 1110 1111

Compare with alphabetical order (which I think is the same pas Proof of Entropy Minima)

0000000100100011010001010110011110001001101010111100110111101111